裂项相消十个基本公式是什么
时间:2023-03-28 14:05 来源:未知 作者:叶丹 点击:载入中...次
裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。裂项相消公式有n·n!=(n+1)!-n!;1/[n(n+1)]=(1/n)- [1/(n+1)]等。 裂项法求和公式 (1)1/[n(n+1)]=(1/n)- [1/(n+1)] (2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)] (3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]} (4)1/(√a+√b)=[1/(a-b)](√a-√b) (5)n·n!=(n+1)!-n! (6)1/[n(n+k)]=1/k[1/n-1/(n+k)] (7)1/[√n+√(n+1)]=√(n+1)-√n (8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n] 什么是裂项相消法 数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。 三大特征: (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。 (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 (3)分母上几个因数间的差是一个定值。 裂差型运算的核心环节是“两两抵消达到简化的目的”。 (责任编辑:ku987小孩) |